Principal Component Analysis Method with Space and Time Windows for Damage Detection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Component Analysis vs. Independent Component Analysis for Damage Detection

In previous works, the authors showed advantages and drawbacks of the use of PCA and ICA by separately. In this paper, a comparison of results in the application of these methodologies is presented. Both of them exploit the advantage of using a piezoelectric active system in different phases. An initial baseline model for the undamaged structure is built applying each technique to the data coll...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Faults and fractures detection in 2D seismic data based on principal component analysis

Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...

متن کامل

Vector ℓ0 latent-space principal component analysis

Principal component analysis (PCA) is a widely used signal processing technique. Instead of performing PCA in the data space, we consider the problem of sparse PCA in a potentially higher dimensional latent space. To do so, we zero-out groups of variables using vector `0 regularization. The estimation is based on the maximization of the penalized log-likelihood, for which we develop an efficien...

متن کامل

Fault detection and isolation with Interval Principal Component Analysis

Diagnosis method based on Principal Component Analysis (PCA) has been widely developed. However, this method deals only with data which are described by single-valued variables. The purpose of the present paper is to generalize the diagnosis method to interval PCA. The fault detection is performed using the new indicator [SPE]. To identify the faulty variables, this work proposes a new method b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2019

ISSN: 1424-8220

DOI: 10.3390/s19112521